ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281510225
A Tutorial Introduction to Blossoming

Article - January 1991

DOI: 10.1007/978-3-642-76404-2_12

CITATIONS READS
12 321

3authors, including:

T. Derose & Ronald N. Goldman
¢ Pixar Animation Studios 4 Rice University

105 PUBLICATIONS 17,558 CITATIONS 244 PUBLICATIONS 4,547 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Basis functions and operators in Chebyshev spaces, operators and semigroups View project

Project Research on Swarm Robotics View project

All content following this page was uploaded by Ronald N. Goldman on 07 August 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/281510225_A_Tutorial_Introduction_to_Blossoming?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/281510225_A_Tutorial_Introduction_to_Blossoming?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Basis-functions-and-operators-in-Chebyshev-spaces-operators-and-semigroups?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Research-on-Swarm-Robotics?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/T-Derose?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/T-Derose?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pixar_Animation_Studios?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/T-Derose?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ronald-Goldman?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ronald-Goldman?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Rice-University?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ronald-Goldman?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ronald-Goldman?enrichId=rgreq-dce6b3a899f2f4ec5224820dcdcae365-XXX&enrichSource=Y292ZXJQYWdlOzI4MTUxMDIyNTtBUzo3ODkzMjU3ODAzNjUzMTNAMTU2NTIwMTMzOTgzNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Tutorial Introduction to Blossoming

Tony deRose

Michael Lounsbery

Department of Computer Science & Engineering FR-35
University of Washington

Seattle, WA 98195

Ronald Goldman

Department of Computer Science
University of Waterloo

Waterloo, Ontario

Canada N2L 3GI

Abstract

A powerful new technique for analyzing Bézier and B-spline curves and surfaces has
been developed recently by Ramshaw and de Casteljau. The method, called blossoming or
polarization, is based on an old idea from multilinear algebra where polynomials are studied
by replacing them with simple multivariable functions. The purpose of these notes is to
provide a brief tutorial introduction to the basic concepts and uses of the technique. Several
implementation consequences are also identified.

1 Introduction

The theory of blossems, or polar forms, is a highly geometric way to view much of the
field of computer aided geometric design (CAGD)(11, 12]. Blossoming provides a simple yet
powerful tool for deriving many of the fundamental properties of commen curve and surface
paradigms. The theory alse unifies these paradigms, and provides a solid base upon which
to build a geometric modeling system.

Our approach will be fairly informal, stressing intuition rather than rigor; more rigorous
treatments of this material can be found elsewhere (5, 6, 11, 12, 14]. In the following, we
assume that the reader is familiar with the standard properties of Bézier curves and B-splines.
An introduction to this material can be found in [2] and [9]. We begin by reviewing some
of the necessary geometric concepts in Section 2. In Section 3, we motivate the definition
of blossoms by examining in detail the case of quadratic Bézier curves. The extension of
these ideas to higher order curves is presented in Sections 4.1-4.4. B-splines are treated in
Sections 4.5-4.7, and a short discussion of surfaces appears in Section 3. We conclude in

Section 6 with some remarks on how blossoming can be used as an effective programming
tool.

268

2 Geometric Preliminaries

We outline here the basic geometric facts necessary for ma nipulating blossoms. For a more
complete introduction, consult {7} or [9].

We will be working in the context of affine spaces. Intuitively, affine spaces are a slight
generalization of the more familiar Euclidean spaces. For our current purposes. it is sufficieny

to think of an affine space as a collection of points that is closed under affine combinations,
An affine combination of points P,

-y P is an expression of the form
p1+ + QnPa, (1)
where a, ..., a, are real numbers that sum to one.

Affine combinations have nice geometric interpretations. Forexample, ifp = a1pi+asp,,

ther p lies on the line segment P1P2 50 as to break the segment into subsegments of relative
lengths a3 : oy, as shown in Figure 1.

Figure 1: The geometric interpreiation of the affine combination p = ap, + arp;
An affine combination of three points has a similar interpretation, except Lhat ratios of

areas are used instead of ratios of lengths. Thus, if p = Py + aypz + a3pa, then the ratios
of the areas of the subtriangles Ay, &;. Ay in Figure 2 are a : oy : ag.

Figure 2 illustrates that if the points pyp;p; form a triangle, then other points p can
be written as affine combinations of P1, Pz, and p3. In fact, every other point p in the
plane of p\p:p; can be written uniquely as an affine combination of these points. If p =
@ P1 + P2 + a3pa, the coefficients q,, Gy, a3 are the baryeentric coordinates of p relative
to the domain triangle p;p,ps. The notion of barycentric coordinates extends naturally

to affine spaces of arbitrary dimension. with the generalization of domain triangles being
domain simplexes.

In addition to affine combinations. affine maps play a central role in the theory of blos-
soms. An affine map is defined in much the same way as a linear map. In particular, a map

T:X > Y between affine spaces X and Y is said to be an affine map if it preserves affine
combinations. That is. if Xt,.... X¢ are points in .\, then

Tl'alx! +oe QLXg) = Q[T(xl) +"‘+OkT(X};)

must hold for all &, for all choices of Xy,

Xz, and for all sets of coefficients o, .o, that
sum to one.

Py

Figure 2: The geometric interpretation of the affine combination p = aqp; + apz + a3ps.

3 Motivation

To motivate some of the ideas underlying blossoming, let us begin by examining quadratic
Bézier curves, an example of which is shown in Figure 3. Recall that they are defined by the
formula

2
Qlu) = 3_vi- Bi(w),

where B?(u} are the quadratic Bernstein polynomials

Biu) = (2:) u'(l = u)™

vo V2
Figure 3: A quadratic Bézier curve

It is well known that for a fixed value of u, the point on the curve Q(u) can be computed
using de Casteljau’s algorithm (cf. {9}). For quadratics, de Casteljau’s algorithm may be

stated as:
Vi = {1 = u)vo+ uv,
vi & (1-u)v, +uv,
vi e (1= u)v]+uv!
Qu) + v

270

The standard proof for de Casteljau’s algorithm proceeds by induction by establishing
and exploiting a recurrence relation for the Bernstein polynomials. As is often the case with
inductive proofs, this derivation of de Casteljau’s algorithm suffers from a lack of intuition.
Blossoming provides an alternative proof that yields substantially more insight. To see this,
let us look at a somewhat nonintuitive bivariate function g(u,, u,} defined by

Q(Uhu?) - VO(I - ﬂl.::'l U-'_)) + V]{ul(l - Ug) + UQ(]. = ul)} + Vouyus.

Notice that this function ¢ has some interesting properties, namely:

1. q is symmelric with respect to its 2 arguments: q(u;, us) = g(ug, ;).

2. gqis bi-affine or 2-affine: Whena+b=1,
(a) glat + bu, ug) = aq(t, uz) + bg(v, ua).
(b) g(uy,at + bv) = agluy,t) + bg{u;,v).
3. q agrees with Q on its diagonal g{u,u) = Q(u).
4. 9(0,0) = v
5. g0, 1) =4q(1,0}= v,
6. g(1,1) = v,

q 11 =q(1.0)

qi0.0 q(1.1}
Figure 4: Relabeling of control points.

With observations 4, 3, and 6, we can relabel our diagram of the quadratic Bézier curve
as shown in Figure 4. From observations 3-6, we can see that the function ¢ is closely related
to the curve Q. ¢ is called a blessom (or polar form}), and is the polarization of Q. By working
with the blossom of Q instead of with @ itself, we exploit a powerful tool for manipulating
Q. The blossom g lets us work singly with small, simple, affine components of Q.

As an example of a simple affine blend, we hold one of the 2 arguments in ¢ constant,
and allow the other to varyv. Then

glu,0) = gl{l—u)-04+u-1,0)
= {1 —u)q{0,0) + uq(1,0).

showing that the point g{u,0) is an affine blend of the points ¢(0,0) and ¢(1,0). As we can
see in Figure 5, q{u, 0} is the unique point on the line between ¢(0,0) and ¢(1,0) that breaks

ik : qlu,ud
.0)

Ca
q(0.0 q(i1.1}
Figure 5: De Casteljau’s algorithm for quadratics as blossom evaluation.

the intervals into the ratio v : 1 — w. Similarly, ¢(u,1] is on the line between ¢/0,1} and
q(1,1).
Now that we have g(u,1) and ¢{u,0), we can derive ¢(u, u} in a similar manner:
glul —u)-04+u-1)
(1 —u)g(u,0) + ug{u,li.

q(w. u)

This tells us that g(u, u) is at position u on the line between ¢{u,0} and q(u,1). From
property 3, g{u, u) is exactly equivalent to Q(u). Repeated affine combinations of blossem
values evaluated with 4 has led us to the point Q[u) on the criginal Bézier curve. This is
simply a rederivation, using blossom netation, of the de Casteljau algorithm for evaluating
quadratic Bézier curves.

Building on simple affine combinations such as these, we will see how to manipulate
arbitrarily complex polynomials. both curves and surfaces,

4 Curves

4.1 Blossom Definition

Blossomns for arbitrary degree polynomials are based on the following thearem from multi-
linear algebra:

Theorem 1 Let Q be a polynomial of degree d. If D > d, then there is a umque symmetric
D-affine function ¢(uy,..., up) such that glu,...,u) = Qlul.

To be more constructive, let us determine the blossom of the extremely simple polynamial
Q(u) = u?, and let us choose D in Theorem 1 to be 3. Thus, we seek a tri-affine function
q(u, up, uz) such that g{u,u,u) = u?. As an initial attempt, consider the following as a
candidate solution:

qiu,, ug, U3] = U Ug.

272

This function is affine in each argument and agrees with @ on its diagonal, but is not symmet-
ric. In particular, gluy, uz, 3) # g{us, u2, u1}. We can solve this problem by symmetrizing
over the three variables, taken two at a time, to yield

Uy + Uz + U3
5 .
This new function meets all criteria, so by uniqueness it must be the function we seek.

Reviewing whatl we have done, if Blossomp() represents the mapping from a polynomial to
its D-affine blossom, then we have discovered that

gluy, ug, uz) =

Uyup + uatia + uyug

Blossoma{u?) = 3

Generalizing slightly, it is not difficult to show that

EE U&;D')"sz i @)

k

Blossomp(u*) =

where the summation is taken over all indices 1;, ..., tx such that each index is chosen from
the set {1,..., D}, and such that no two indices are equal.

The operator Blossomp() is linear, meaning that if a and b are real numbers, or, more
generally, vectors, and if P(u) and Q{u) are two polynomials, then

Blossomp(aP{u) + Q(u)} = a Blossomp(P(u}) + b Blossomp(Q{u)).

The linearity of Blossomp(), together with Equation 2 implies that the D-affine blossom of
an arbitrary polynomial @(u) = ¥, ciu® can be expressed as

T B as T
Blossomp(Q(u)) = Blossomp(d_ cpu*) =3 cp 5. = . (3)
& PR (f)
For example, if Q(u) =1 + 2u + 4u® — v?, then

Blossoma(Q(u)) = 1 4+ 2.3 - S “’3“3 e

— Ujuqliz.

4.2 DBlossoms and Bézier Representations

Given a blossom g(u,, ..., u4), suppose we want to find the Bézier control points vg, ..., v of
the curve Q(u) = g(u, ..., u). To solve this problem, we can expand the first argument of g
using the identity u = (1 —u}-0+ u-1, then use the fact that q is affine in its first argument.
This gives us

Qu) = (1 — wg(0. v u) + ug(l.u, ..., u).
Continue this process, recursively expanding the terms (0. v, ..., u) and g(1,u, ..., u). When
this is done and terms are collected, the resulting expression is

=0

Q()—io 0.1 1d' 4o
u) = q(,...,,._....)iu(l—u) .

Since a polynomial has a unique set of Bézier control points, we deduce that

vi=qi0,...,0,1, .., })

273

Te summarize, given a blossom ¢(uy, ... ug), the i* Bézier control point of its diagonal
polynomial can be extracted by evaluating g ai 1 a total of i times, and at 0 a total of d — i
times.

This observation can be generalized for Bézier curves parametrized on intervals other
than [0,1]. More specifically, the relationship between Bézier control points parametrized on
an arbitrary interval [s, 1] to blossom values is v, = gls, o8, b,y t).

The above discussion shows that if the blossom is known in the sense that an arbitrary
value can be computed, then the Bézier control points arise by evaluating the blossom at
simply described values. Consider now the converse problem: given the Bézier control points
of a polynomial Q{u), compute an arbitrary value of its blossom ¢(t, ..., ug). In principle,
one could write down an expression similar to Equation 3 in terms of the Bézier control
points instead of the power basis coefficients ¢,. A simpler approach, however, is to provide
an algorithm to compute arbitrary values. Such an algorithm is remarkably simple, as shown
in Figure 6. De Casteljau’s algorithm can be seen to be a special case of the algorithm of

Figure 6, occurring when u; = - -- = uy = u; that is, for the computation of a point on the
diagonal.

EvaluateBlossom(vp, ... 4. 1y, ..., 1)
fori=1toddo
for j=0tod—ido
vi= {1 —ulv, + uvy

{ v; now equals g{uy, ..., 1, 1,...,1,0,....0) }
7
end
end
return vy

Figure 6: Evaluation algorithm for an arbitrary blossom value g{u. ..., ug) given the Bézier
control points vy, ..., v4.

4.3 Subdivision

Referring to the de Casteljau algorithm depicted in Figure 7, notice that the points
(0,0, 0,u).q(0,0u u).... . q(u,u. ... 1)
are all computed by the algorithm. These are all of the form ¢{s.....5,¢,...,2), where s = 0

and { = u. The results of Seciion 4.2 therefore imply that these values are exactly the Bézier
control points of Q defined on the interval {0, u]. Similarly, the points ¢(u,...,u.1...., 1)
were computed as well. These are precisely the control points of Q defined on the interval
{u, 1}. De Casteljau’s algorithm therefore effectively subdivides the original Bézier curve into

two subcurves by deriving as a side effect the Bézier control points that characterize each
subinterval.

Q0. 1) _----’Q a1, 1)

q(1,1,1)

q(0.0,0)

Figure 7: De Casteljau’s algorithm for cubics as blossom evaluation,

4.4 Degree Raising

2 3

Suppose we have a curve Q{u) = Y viB?(u) and we want to find a curve Q(u) = > ¥, B3(u}
1m0 =10

such that Q(u) = Qjfu).

Our method for accomplishing this will be:

1. Find the blossom ¢ of Q.
2. Build the blossom § of Q from q.

3. Evaluate § to extract the v,

This process is summarized in Figure 8.

We start with a bi-affine blossom g, fully characterized by vg, v, and va. Qur goal in
degree raising is to find a tri-affine blossom ¢ such that

Q) = §{x, u, u) = glu. u) = Q(u).
The expression

g y U + g, s
q(“ls“Q.Ug): g, 1) + q 1'3 uz) + gqluy ug)

defines a symmetric tri-affine function that has the proper behavior on the diagonal — by
uiniqueness, it must therefore be q.

We still need to find the control points v, that characterize §. Now that we have g, this
is accomplished by simple evaluation:

Vo = 40,0, 0) = 9(0.D)+q[03.01+qt0.0) _ vo
Yio=4(0,0,1) = tROlRR0N o v
vV = gl0.1.1) = (?_(Q.I)+q(13.1]+q{0.1} - ?V:;‘Vz
Va = §(1,1.1} = a(l-u+7(ta.tg+qn.1) — va

275

Bezier representation m{} Bezier representation

convert to evaluate
blossom
Blossom a) Blossom
symmetrize

Figure 8: Schematic diagram of how blossams are typically used to solve change of
representation problems,

The above procedure for degree raising extends to curves of any degree. In general,
raising a degree d Bézier curve () whose blossom is ¢ 10 a degree d + 1 curve @ with blossom
¢ is based upon the symmetric, multiaffine relation

qluy, vy, Ug) o qlun o Mo Uiy, g) o @{ug, L gg)

§lur, ..o gy} = 441

4.5 B-splines

The previous sections have indicated that blossoms are useful for analyzing individual poly-
nomial curve segments. In this section. we explore the use of hlossoms to study piecewise

curves, i.e., B-splines. As a prerequisite, we must first understand the relationship between
derivatives and blossoms.

4.5.1 Blossoms, Derivatives and C* Continuity

Two curve segments F : {r,s] —» X and G : [s,] — X, where X is an affine space, are said
to meet with C* continuity at s if they have matching derivatives up to order & at &

FU)s) = GUNs), i=0.. .k,
where superscript {i) refers to the /* derivative.
Suppose two segments F and G meet with C* continuity at 5. What can be said about the

relationship between their blossoms? To address this question, let us examine the connection
between derivatives and blossoms.

Let f denote F's blossom. and let g denote G's. To simplify the discussion. we will
also assume that F and G are of common degree d. The definition of F(s) that is most
convenient here is

Fills) = %F(s'fuﬂu:o

= Ef(5+ﬂ-5+u,...,3 b ublu=o

276

To continue, we need Lo invoke the chain rule, which in this instance takes the form

4 af du;

Ef{s-+ Uy o ny S + U) = ; bj{(ulg ooag “d);u,gs....,ud=; Elu:ﬂ-
=uy =uy =

The terms %‘Llwu are simply disposed of, since u; = s + u implies that &|,.o = 1.
Concentrating now on the terms containing a partial derivative of f. we get:

af
Ty eama (U5 ug) = a‘((l—Ui)f(uh---,u;-n,U,u.'+1,---,un)
[i
+uif(ll1, seeg Uiy 1: Higry: - ud))lu......tu:s
£ fl-ul!"'\ul—l)'lPul.+l1"'1uﬂ_:iU| ug=s
_f(ulv---sui-lsosuﬁly“d)lu. ug=a

= fil,s....,s8) = f(0,5,...,3).

A similar result holds for other terms containing partial derivatives of f. Putting this
together, and using the symmetry of f, we find that:

FMsY =n(f(1,s,...,8) — f(0,s,....8)).

Applying the process once again reveals that
FO sy =n(n - D{f{1.1.5,...,8) —2f(1,0,8,...,8) + f(0.0,s,...,5)}).

By iterating this procedure. the general form for the i** derivative can be shown to be

1 ! i
FO{s) = {nt‘z‘.! E(—UJ (;) f(l,...l,l,O,...\O,s‘...si. (4)

Coming back to the question of continuity, if £ and ¢ meet with C! continuity at s,
then we have

F(s) = G(s)
Fl(s) = GW(s).

Hence, their blossoms satisfy:

ey
ciy
[
[
]
e,
o
4
s
Z
Il

g{l,s,....5) = g{0,s....,3).
Adding the first equation in Equation 3 to the second, we find that the left side becomes
fil.s.. ... $)— f(0,s,....8)+ fs.s.....5),

which is an affine combination of three points. Since f and g are multiaffine, the sum of the
LWo equations can be written as

fll—=0+4s,5,...,5)=g{1 —0+s,5,....5).

This shows that if F and & meet with C! continuity, then their blossoms satisfy

fls... .. 5) = gls....8)

Jls+le....5) = gls+1l.s....5). (6)

Moreover, since every value 7, can be written as an affine combination of & and s + 1,
Equation 6 implies that

s, ..08) =g{zy.5....8), 71

for all z;. This shows that the conditions of Equation 5 imply Equation 7. Since the converse
clearly holds as well. we deduce that Equation 7 is a necessary and sufficient condition for
€' continuity. The generalization for C* continuity follows quickly from Equation 4. As a
theorem, we have:

Theorem 2 Two polynomial segments F : {r.s} — X and G : [r,s]— X of degree n, having
blossoms [and g respectively. meet with C* continuity at s if and only if

forall zy... 7.

4.6 B-splines and Piecewise Blossoms

\We saw in Section 4.2 that a blossom f,(ui, u2. u3) is completely determined by the progres-
sive values fi(s.s,s), fi(s,s.t). fiis,t.8). fi(t.1, 1), since these are the Bézier control points
for the diagonal polyvnomial Fi(u} = f,(u, u,u} on the interval (s, t]. More generally, if t,,
trrs Livo: Bi43y fipa. lips are distinet non-decreasing values called knets, then f; is deter-
nuined by the progressive blossom values fi(4,, {01, L)y filtiey. fizz tivs)y filtivas tivas tiza),
filtigs tipa Ligs). That is, once these values have been specified, any other value of f, can
be computed. To see that this is so, notice that these values can be used to compute the
values fi(tigz isa, tiza). fillive: Livas tipa), fillia tisa tga)s filtiss. tiza, Lipa), as shown in
Figure 9. This latter set of values are the Bézier control points for the segment parametrized
on the interval [fi1. tiy3]. Since the Bézier control points uniquely characterize a blossom,
an arbitrary blossom value can then be computed using the algorithm of Figure 6. A more
direct approach proceeds by constructing an arbitrary blossom value for a segment of degree
d directly from the progressive vatues

Vig; = f|(t|+_1: t1+;+lr D050 tl+)+d—l)- J =0.... da
using the algorithm of Figure 10.

Returning to cubic curves, the values fi{t; tiyr, tipo) filtiers fiva. figady filtive. tipas g a),
Jiltita: tiaq tigs), then, characterize a polynomial Fi{u) := fi(u, u, u) on the interval [t,42. ti43).
The idea now is to build a piecewise C? curve F such that F{u) := F,(u) = fi(u. u. u) when
u € [fipo.figs]. We will do this by building a piecewize blossom f. Recall from Theo-
rem 2 that F7_, and F; meet with C? continuity at t,,, if and only if their blossoms satisfy
fl--l(tz+27 u, U) = f.(ti-)-z. u, U} for all u. v.

Now we can characterize f; by the progressive blossom values given above. We can
similarly characterize f,_, by the progressive values of three knots, beginning at t,_1 ... fuyq.

278

) <
b) filtie2 6.5

a i(ti+2,tie 3, tis4)
tie2,tied b
fi(tis2, tis2,tied '+ 2o

£iltie1,0i+2,1i43) S 3
o = filtied,tis3,ti
fitie3 ti+3,0e3 i(tie3, ted, tisd)

M fitiv2,tis2,is2)

\ fiti+1,tis2,tiv2)

fi(tied, tiva,Lis 5)

fiti,tie1,ti42)
a b c
| {] | | |
I 1 T | 1 T
ti tiv1 iz i3 tivd ti+s

Figure 9: Another way to characterize a curve segment.

We require that f;_, and f; have values that agree whenever certain knot arguments agree,
as given by the following conditions:

fiorltitign, tig) = filli, iy, tiga)
ficalbipr, fipns tipa) = filtigr, tivaa tiga)
Sica(livas bivas tiva) = Filliva, bivs, fiva)-

With these conditions, the C? constraints will be satisfied (this is easily verified). Thus,
there are only 5 points that determine f;_; and f;, and hence F;_; and F;. These points are:

Jica(bioa, tiy tiga)

Jisr (b, tigr, tign) = filtiy tigrs tiva)
Fimr(tign, tirns tiva) = filligr, tipn, tiya)
Jici(tigz, tivar tiga) = filtipas tiva, tigs)

Siltiga, tiga, tigs).

Moreover, no matter where these 5 points are placed, fi., and f; will meet with C?
continuity at ¢;. We may continue by placing another segment f;y, and another knot #;e.
The result of this construction is seen in Figure 11.

We can improve our notation by dropping the subscripts on the functions and defining

R e e e T

- Lo Z L

v

BvaluateBlossomProgressive(v;, ..., Vigd, biy ey L2dmiiy U1y td)
for k=0fod—-1do
for£=0tod—k—-1do

{ @, are barycentric coords of upyy in [tipkit, tavivhee]- }
_ kg = Lipese

T lagivkbe — bivhte
a=1-4

Vist =@ Vige + B Vg

{ Vige now equals glug, ..., Uks1, bighaty - Ligdeio1) }
end
end
return v;

Figure 10: Evaluation algorithm for an arbitrary blossom value g(u;, ..., ug) given progressive
blossom values and knots.

a piecewise blossom f(uy, 1y, u3) using the rule:

Flug, g, u3) = filuy, ua, uz) if w;’s are not all equal and uy,us,us € [t tiys)
LER TR T fi(w, vz, u3) i u's are all equal and u; € [tj42, tes)

{Remark: strictly speaking, this isn’t strong enough; see Ramshaw[l1, 12].] The labeling
becomes much simpler now, since we can drop subscripts of f's in Figure 11.

The values f{tioy, 8 tiga)y - - -y ftina tisas tiza)s - - -3 f(figa, tiss, tive) are the cubic B-spline
control points for the knot vector 8;_;,..., 146 In fact, when uy = w3 = -+ = ug = u the

algorithm of Figure 10 is exactly the de Boor algerithm for computing a point on a B-spline
(cf. Bartels et al [2] or Farin [9]).

These ideas can be used to define the cubic B-spline design scheme:

Input: A sequence of control points vg...V¥n, a sequence of knot values p...¢n43, and 2
point u € [tz,1n).

Output: A point F(u).
Such that: The curve Fu), u € [t;, 8] is C%

Method: Leti besuch that u € [fiye, tirs], and set viy; = fltip;, tivitr, Livse2) 1 =0,1,2,3,
then use the de Boor algorithm of Figure 10 to compute the point fi{u,u, u) = F(u).

We now generalize this construction to an arbitrary degree d: For a general degree d,
€41 continuity at ¢;;4_, requires that adjacent blossoms must satisfy

fl—l(ti-l-d—h Uy ooy ud) = fi{ti+d-‘h Ugyeeny ud)

for all us,...,us This is guaranteed if f;_; and f; have blossom values that agree at their

280

fir 1{U+4,1ie3,tiv6)
) fi-l = fi = Hi+1(lie2,lisa tivd)

fi(l'.i+2.tio2,|.i+3s‘l(
fi-1= £i = firt{tinl, o2, lis3) £

= fie1(tie3,lis2,lisd)

fi-1 = fi(ti+2, Lis2,Lis2)

fir1{ti+4,ti+4,li+4)
N il = Bl tiz,tie2)

(Y fivl(livd,lisg,lies)
Bt (tied,ivd tiea))

(:)

fi-1(tie1,U+1,5+2)

dn i1t 1 tin 1 tin1) fi = Gi1(ti+3,Lisd,lisS5)
fi-1 = fiti ti+1,0i+2)

i1l Li+1, le1)

fi-1(ti-1,t,tiv 1)

R 1 L [i
1 — 1 ¥ 1 §

ti1 tivr Li+e2 Lis3 tivd ti+5 Lie6 |

Figure 11: Three segments joining with C? continuity. i

3

overlapping knots: i
firalti- oy tipar) = filtioy tieam) :

fialtieds o tigad-2) = fillipdors oo tipaa-a)

We can therefore define a piecewise blossom f(uy, ..., uq) according to: | 1
Flu e filur,...,uq) if u's are not all equal and w;,...,us's € [, tigad—l i
Do BTN fi(uy, .-, wa) if s are all equal and u € [tp4e1, Epdl- 4

]

4.7 Knot Insertion ; i
Knot insertion refers to the problem of finding control points for a curve over a knot vecior i
T, given the control _points for the curve over a knot vector T, where T is a refinement of T; { i
that is, where T T. }

The CAGD literature describes two major knot insertion algorithms: Boehm’s algorithm
{3], and the Oslo algorithm [4]. The Oslo algorithm is capable of solving the problem no

281

matter how many knots are added to T to obtain T, whereas Boehm’s algorithm is restricted
to the case where T and T differ by a single knot. (Boehm’s algorithm can be used to insert
any number of knots by successively inserting one knot at a time.) Boehm's algorithm was
originally proved using properties of B-spline basis functions; here we show how Boehm's
algorithm is interpreted from the perspective of blossoming. For concreteness weshall restrict
the discussion to cubic curves. The general case presents no conceptual difficulties, but the
additional notation is sufficiently cumbersome that we omit it here,

_Let F(u) be the cubic B-spline curve in question, let T' = {t;} be the original knot vector,
let {v;} be the control points of Q@ over T, and let t € [t;,tis1] be the knot to be inserted.
From the blossoming point of view, we know that the B-spline control points are obtained
by evaluating the blossom f of F at consecutive triples of knots. After ¢ is included, the
control points

Vi1 fltionti tin)

f(ti) t.‘, tH-l)
are no longer valid for T, Instead, these must be replaced with the new control points

Vier = flliontad)
v ftiy i tin)
Vinn = f(htintia)

Vi

This procedure is summarized in Figure 12.

The Oslo algorithm, while somewhat more complicated due to its generality, can be
shown to be equivalent to the evaluation of off-diagonal blossom values using the algorithm
of Figure 10.

5 Surfaces

We now turn to the theory of blossoms for surfaces. The generalization to surfaces can be
done in two different ways, yielding either tensor product or non-tensor product descriptions.
We first examine the tensor product construction.

A bi-d-c tensor product surface F(u,v) takes the form
Fu,v) = 3 wisbi{u)by(v),
H

where w's denote the (rectangular array of)} control points, and where ¥'s denote a collection
of univariate blending functions of degree d. Linearity of the operator Blossomp() implies
that blossoming can occur independently in u and v, creating a function f(uy, ey Upi 01y -, VD)
with the properties

1. f is affine in each of its 2D argument;

2. f is symmetric with respect to interchange of u’s;

3. f is symmetric with respect to interchange of v's;

282

dai

vi2

b1
t

| | L
T 1 | ¥ | 1
ti-

ti2 1 ti, tin ti+2 ti+3
t

Figure 12: Boehm’s knot insertion algorithm.

4. F(u,v) = f(u,.,u;v,..,v)

Note that f is not guaranteed to be symmetric if one of the u arguments is interchanged
with one of the v's. For instance, in general

f(uli Ugy vy YD, Ty Uy "'1“0) # f(vliu?: ---y WP; Uy, By, "'er)'

All results of the blossoming theory for curves can be applied to fluy,..., us51y,...,v0),
including extraction of Bézier and B-spline points by evaluation, degree raising in u or v,
etc.

Non-tensor product surface forms arise when the domain parameter is allowed to range
over R? instead of ®. (The following readily generalizes to higher dimensions.] We will map
 into a point @{u) on a surface using the following unigueness theorem for surfaces:

Theorem 3 Let Q@ be a bivariate polynomial of degree d. If D = d, there is a unique .

symmetric D-affine function ¢ such that Q(u) = ¢(u,...,).
o

Similar to our treatment of curves, g is the blossom of Q. The Bézier points of @@ can be
extracted directly by evaluating ¢ at simply described values. Figure 13 shows what these
values are for quadratic surfaces. In general, if g is a blossom of @, then Q’s Bézier contiol

points relai

5.1 Ev

Given a po
for curves,

Alsa,

and similaz
simple, as s

5.2 Sul

Subdivision
algorithm. -

vao = q(r.r}

vio = q(r.s)
vior = g{rt)

voui = g(s.)
vou = q{s.5} vooz = 4(t0)
Figure 13: Blossom labels for quadratic surfaces.

points relative to a domain triangle rst are given by

Vipizds =q(r,...,r,s,...,s,t,...,tl.

u 12 iy

5.1 Evaluation

e would like to find the point Q(u) = q(x,u). Just as

Given a point u = ar + s + oal, W
f affine combinations. First, we have

for curves, we can find it by a series o
qlu,8) = glaar+ s+ ast, i)
C‘IQ("! u) + a’l‘](si u) + ﬂaQ(t: I.l).

I

Also,
g{ryonr + o285 + ast)
al‘?(rr 1") + Cl'gq(f, ‘9} + 03'1(7‘; t)!

g(r,u)

and similar expressions can be found for g(s,u) and qlt, u). Geometrically, this is very

simple, as shown in Figure 14.

5.2 Subdivision

m the points evaluated in the de Casteljau

mes directly fro
face into 3 pieces about the

Subdivision for Bézier surfaces co
by the algorithm breaks the sur

algorithm. The subdivision given

284

5 1 q(r.r)

q(r.s) n

qls.n q(tD)

q(s:s)
Figure 14: De Casteljau’s algorithm for surfaces using blossom labeling.

point of evaluation. Using blossoming, the proof is again fairly simple. We need only observe
that the parameters of the intermediate points found by the algorithm have the proper form
to be control points for a degree d polynomial. By uniqueness, they must be correct. For
example, the subtriangle shown in gray in Figure 14 has as its control points ¢(r, r}, g{u, 1),
q(r,t), ¢, u), g(u,), and g(t, t). These blossom values are sufficient to describe Q when its
domain is restricted to the triangle urt.

5.3 Degree Raising

Given a quadratic Q defined by its control points Vi .5, Suppose we want to raise its degree
to a cubic @ defined by the control points ¥, ;, i, such that Q(x) = @(u). The blossom § of

@ in terms of ¢ is
v, u2) + q(2, ¥3) + g(wy, u3)
3 .

q(ulr Uz, u3) =

Note that this is the same as the equation used in degree raising a Bézier curve! The

domain is in a higher dimension, but the resulting equations are exactly the same.

As with degree raising of curves, the control points ¥,, ,, ., can now be determined easily _.

by evaluation. For example,

g! r.r!+q! r.r!-{-q! r.r!
3

{'300 = 6(",1", 1")

l
3
g

- - = glralrglst)+gfrt] _ ¥ ¥, v,
Ving = Q(",S,t) 3 = 3

Il

285

Unlike the close relation between Bézier curves and Bézier surfaces, a similarly nice
generalization of B-spline curves to surfaces is yet to be found.

6 Blossoms as Abstract Data Types

We have thus far been treating blossoming primarily as a theoretical tool for developing
algorithms for the manipulation of Bézier and B-splines curves and Bézier surfaces. In this
section, we briefly describe how blossoming can also be used as an effective tool for computer
programming,.

The key to exploiting blossoming for programming is to create a software library that
supports blossoms as an abstract data type [1]. An abstract data type (ADT) is simply
a collection of data types together with a collection of operations for manipulating them.
An ADT for performing affine and Euclidean geometric programming has previously been
detailed {7, 8]. Here we outline how the geometric ADT can be expanded to embrace blos-
soming, and hence Bézier and B-spline curves and surfaces.

The fundamental data types supported in the geometric ADT include Space, Point,
Vector, and AffineMap. The Space data type is a model for arbitrary (finite) dimensional
affine spaces. AffineMaps between spaces can be created by specifying how the map trans-
forms the points of a domain simplex. For instance, if the points rst form a triangle in a
two dimensional affine space X, and if RST are points in a space Y (¥ need not be two
dimensional), then an affine map M : X -+ Y can be created by pseudo-code similar to

M := AffineMapCreate(r, s, t, R, S, T)
Once M is created, executing a statement like
AffineMapEvaluate(M,p)
returns the point M(p) in Y.

Blossoms can be introduced into the ADT by providing a Blossom data type. Since
blossoms are nothing more than symmetric multiaffine maps, support for them is most easily
achieved as a generalization of the AffineMap data type; that is, the AffineMap type can be
considered as a univariate blossom. One method of creating blossoms would be to generalize
the pseudo-code above by specifying an appropriate number of argument lists, together with
their image under the blossom. This is not terribly convenient in practice, as there are a
number of restrictions on the argument lists used. A somewhat more convenient way is to
specify a blossom by specifying its diagonal polynomial in Bézier form. For instance, if ¥
denotes the control net (a sequence of points in some space Y) for a degree d triangular
Bézier surface Q, defined on a domain triangle rs¢ in a two dimensional space X, then Qs
blossom can be created using pseudo-code such as

q = BlossomCreateFromBezierNet(r, s, t, V).
Once created, an arbitrary value of q can be evaluated using pseudo-code such as
BlossomEvaluate(g, ul, ... , ud)
where ul, ..., ud are arbitrary points in X. For curves, occurring when the domain space
X is one dimensional, it is also convenient to create blossoms from the B-spline representation
of their diagonal.

The advantage to this approach is that the fundamental operations of many algorithms
are encapsulated in the blessom evaluation routine BlossomEvaluate. The implementation
of this algorithm is essentially given in Figure 10. Indeed, as we've already seen, the following
algorithms are all based on blossom evaluation:

286

~ The de Casteljau and de Boor algorithms.

— Sablonniere’s algorithm [13] for the conversion between Bézier and B-spline curves,
illustrated in Figure 9.

- Boehm's knot insertion algorithm.
— The Oslo algorithm.

- Bézier subdivision.

References
[1] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley,
1983.

[2] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An introduction to splines
for use in computer graphics & Geometric Modeling. Morgan Kaufmann, Los Altos,
CA, 1987.

(3] W. Boehm. Inserting new knots into B-spline curves. CAD, 12(4):199-201, 1980.

(4] E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision techniques
in computer aided geometric design and computer graphics. Computer Graphics and
Image Processing, 14(2):87-111, 1980.

(5] Pierre de Casteljau. Formes a pdles. Hermes, Paris, 1985.
(6] Pierre de Casteljau. Shape Mathematics and CAD. Kogan Page, Ltd., London, 1986.

{7] Tony D. DeRose. A coordinate-ree aproach to geometric programming. In W. Strasser
and H.-P. Seidel, editors, Theory and Practice of Geometric Modeling, pages 291-306.
Springer-Verlag, Berlin, 1989.

(8] Tony D. DeRose. Coordinate-free geometric programming. Technical Report 89-09-16,
University of Washington, Seattle, WA 98195, September 1989.

[9] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, Boston, 1988.

[10] Gary Herron. Techniques for visual continuity. In Gerald E. Farin, editor, Geometric
Modeling: Algorithms and New Trends, pages 163-174. SIAM, 1987.

[11] Lyle Ramshaw. Blossoming: A connect-the-dots approach to splines. Technical Re-
port 19, Digital Systems Research Center, Palo Alto, CA, 1987.

[12] Lyle Ramshaw. Béziers and B-splines as multiaffine maps. In Theoretical Foundations
of Computer Graphics and CAD, pages 757-776. Springer, New York, 1988.

[13] P. Sablonniere. Spline and Bézier polygons associated with a polynomial spline curve.

CAD, 10(4):257-261, 1978,

(14] Hans-Peter Seidel. Computing B-spline control points. In Theory and Practice of Gee-
metric Modeling, pages 17-32. Springer-Verlag, Berlin, 1989. i

https://www.researchgate.net/publication/281510225

