Skeletal animation, forward kinematic

Linear Blending Skinning (LBS) formula
$$ \begin{equation*} \bar{\mathbf{p_i}} = \sum_{j=1}^{n} \ \ w_{ij} \ T_j \ \mathbf{p_i} \end{equation*} $$
- \(n\) number of bones
- \(w_{ij}\) scalar weight at the i\(^{\text{th}}\) vertex associated to the j\(^{\text{th}}\) bone
- \(T_j\) the 4x4 matrix, the global transformation of the j\(^{\text{th}}\) bone from its rest pose.
- \(\mathbf{p_i}\) mesh's vertex in rest pose
- \(\bar{\mathbf{p_i}}\) the vertex after deformation.
Vec3 linear_blending_skinning(
const std::vector< std::map<int, float> >& skinning_weights,
const std::vector<Mat4x4>& skinning_transfos,
const std::vector<Point3>& in_vertex,
const std::vector<Vec3>& in_normal,
std::vector<Point3>& out_vertex,
std::vector<Vec3>& out_normal)
{
for(int i = 0; i < skinning_weights.size(); ++i) // For each vertex
{
Mat4x4 blend_matrix = Mat4x4::null();
std::map<int, float> bones = skinning_weights[i];
for( std::pair<int, float> pair : bones) { // For each bone
blend_matrix += skinning_transfos[ pair.first ] * pair.second;
}
out_normal[i] = blend_matrix.get_mat3x3().inverse().transpose() * in_normal[i];
out_vertex[i] = blend_matrix * in_vertex[i];
}
}
Computing \(T_j\) (skinning transformation)
$$ \begin{equation*} T_j = W_j \ (B_j)^{-1} \end{equation*} $$- \(W_j \) joint's world matrix in its current animated position.
- \(B_j \) joint's bind matrix in world coordinates, bind matrix is saved at rest position (a.k.a T-pose) of the skeleton. In short, it is the joint's current orientation when binding the mesh to the skeleton.
The global bind pose \( B_j \) is computed by multiplying the chain of local bind matrices. The global animated pose \(W_j\) is computed by multiplying the chain of local bind matrices interleaved with input user transformations:
$$ \begin{equation*} \begin{split} W_j &= L_{\text{root}} \ \ \Ul_{\text{root}} \ \cdots \ L_{p(j)} \ \ \Ul_{p(j)} \ \ L_j \ \ \Ul_j \\ W_j &= W_{p(j)} \ \ L_j \ \ \Ul_j \\ B_j &= L_{\text{root}} \ \cdots \ L_{p(j)} \ \ L_j \\ B_j &= B_{p(j)} \ \ L_j \\ \end{split} \end{equation*} $$
- \( p(j) \) parent index of the \(j^\text{th}\) joint
- \( L_j \) local transformation (according to the parent joint) of the joint in rest pose.
- \( \Ul_j \) local transformation defined by the user.
Procedure to compute the global skinning transformation \(T_j\) by specifying a local transformation at each joint:
void compute_skinning_transformations(Mat4x4* tr) {
rec_skinning_transfo(tr, g_skel.root(), Mat4x4::identity() );
}
void rec_skinning_transfo(Mat4x4* transfos, int id, const Mat4x4& parent)
{
// W_j = W_p(j) * L_j * Ul_j
Mat4x4 world_pos = parent * g_skel.bind_local(id) * g_user_local[id];
// T_j = W_j (B_j)^-1
transfos[id] = world_pos * g_skel.bind(id).inverse();
for(unsigned i = 0; i < g_skel.sons( id ).size(); i++)
rec_skinning_transfo(transfos, g_skel.sons( id )[i], world_pos);
}
If you don't have access to the local transformation of the joint \( \Ul_j \) you can compute \(T_j\) given the current world position of the joint:
for(int i = 0; i < bones.size(); ++i) {
Mat4x4 tr = bone_world_transfo(i) * bind[i].inverse(); // T_j = W_j (B_j)^-1
skinning_transfo[i] = tr;
}
Computing \(L_j\) (bind local matrix)
If only the world bind pose \( B_j \) is known you can find back the local bind pose \( L_j \) with:
$$ \begin{equation*} L_j= (B_{p(j)})^{-1} \ B_j \end{equation*} $$Computing \(W_j\) (joint world matrix)
Given a joint in rest pose \( B_j \) you can find back its animated position just apply the current skinning transformation \( T_j\):
$$ \begin{equation*} W_j = T_j \ . \ B_j \end{equation*} $$Computing \( \Ul_j \) (user local transformation)
You can extract the user local transformation \( \Ul_j \) from the joints world matrix \( W \):
$$ \begin{equation*} \begin{split} W_j & = W_j \\ W_{p(j)} L_j \Ul_j & = W_j \\ L_j \Ul_j & = (W_{p(j)})^{-1} W_j \\ \Ul_j & = (L_j)^{-1} (W_{p(j)})^{-1} W_j \\ \Ul_j & = (W_{p(j)} L_j)^{-1} W_j \\ \end{split} \end{equation*} $$Set \( \Ul_j \) (user local transformation)
Say we seek to update the local user transformation \(\Ul_j\). We could reset it to a new value \(\Ul'_j\) or apply an incremental transformation \(\Ul'_j = Incr_j \ \ \Ul_j \).
But what if we only have access to \( U_j \), an incremental user transformation in world space? With \( U_j \) we can directly transform an animated joint \( W_j \) to its new position \( W'_j \):
$$ \begin{equation*} \begin{split} W'_j & = U_j \ W_j \\ (L_{\text{root}} \ \ \Ul_{\text{root}} \ \cdots \ L_{p(j)} \ \ \Ul_{p(j)} \ \ L_j \ \ \Ul'_j) & = U_j \ W_j \\ (W_{p(j)} \ \ L_j \ \ \Ul'_j) & = U_j \ W_j \\ \end{split} \end{equation*} $$Since we seek the new local user transformation \( \Ul'_j \) lets isolate it:
$$ \begin{equation*} \begin{split} (W_{p(j)} \ \ L_j \ \ \Ul'_j) & = U_j \ \ W_j\\ ( L_j \ \ \Ul'_j) & = (W_{p(j)})^{-1} \ \ U_j \ \ W_j \\ \Ul'_j & = (L_j)^{-1} \ \ (W_{p(j)})^{-1} \ \ U_j \ \ W_j \end{split} \end{equation*} $$Reference
Vertex skinning with GLSL
Smooth skinning tutorial
LBS with Quaternions
No comments